Deutsche Demokatische Republik

Hydraulik RADIALKOLBENPUMPEN mit zwei Volumenströmen

verstellbar Hauptabmessungen

Funktionsmerkmale

10869

Gruppe 135571

Гидравлина Радиально- Поршневые насосы с двумя регулируемыми объемними потонами Показатели Основные

Kennwerte

Функциональные признаки

Hydraulics Radial Piston Pumps with two Output Volume Adjustable

Characteristic Values

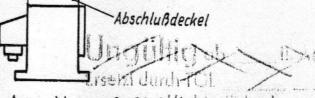
Main **Dimensions**

Functional Criterions

Deskriptoren: Hydraulikgeraet; Radialkolbenpumpe; Verstellpumpe

Abmessung: Einsatzbedingung; Geraetekennwert

размеры


Verbindlich ab 1.8.1977

Maße in mm

Nicht angegebene Einzelheiten sind zweckentsprechend zu wählen. A. Abt., ab 4.4.86

ohne Abschlußdeckel

AD mit Abschlußdeckel

Bezeichung einer Radialkolbenpumpe A von Nenngröße 32-32/16, Drehrichtung links (L):

Radialkolbenpumpe A 32-32/16 L TGL 10869

Tabelle 1

701 Leipzig.

Bereich

DDR.

der

80

2

Nenn- größe	verdrän- gungsvo- lumen cm³	Nenn- druck MPa	dreh- zahl min ⁻¹	Drehzahl- einsatz - bereich min-1	druck- bereich	Stellbereich des Volumen- stromes bei Nenndruck	Leck- druck max. MPa	Saug- druck min. MPa	Eingan n L, R MPa	gsdruck nax U MPa
5 - 5 / 16 32 - 32 / 16 125 - 125 / 16	5 - 5 32 - 32 125 - 125	16 1	1450	500 bis 1450			0,02	-0,02	16	16
160-160/10			950	500 bis 950	0 bis 16					

Tabelle 2

Förderrichtung , Drehrichtung	Kurzzeichen
Eine Förderrichtung, Drehrichtung rechts 1)	R
Eine Förderrichtung , Orehrichtung links 1)	1 "
Förderrichtung umkehrbar (Obernullstellen), Drehrichtung beliebig	Ü

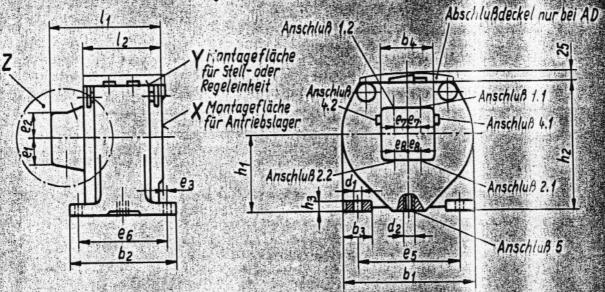
S = Seewasserbeständig mit DSRK-Abnahme

Das Bezeichnungsbeispiel muß dann lauten: A 32-32/16 L TGL 10869 S

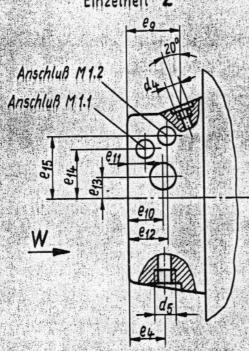
Die zulässige Belastungsdauer bei Drücken über dem Nenndruck und Volumenstrom < Q ist aus den Kennlinien Seite 10 zu ersehen.

1) Drehrichtung auf Antriebsseite gesehen

Fortsetzung Seite 2 bis 11


Verantwortlich: VEB Kombinat ORSTA-Hydraulik, Leipzig

Bestätigt: 29.12.1976, Amt für Standardisierung, Meßwesen und Warenprüfung, Berlin


Lizenz-h

AIAD

Nenngröße 5-5/16 und 32-32/16

Einzelheit **Z**

Ansicht W

Anschluß zu 1.1. für Stell und Regeleinheiten Anschluß zu 1.2. für Stell- und Regeleinheiten

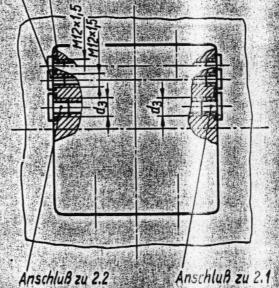
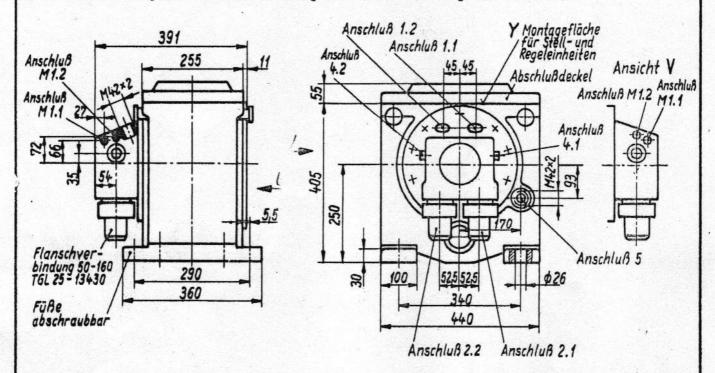
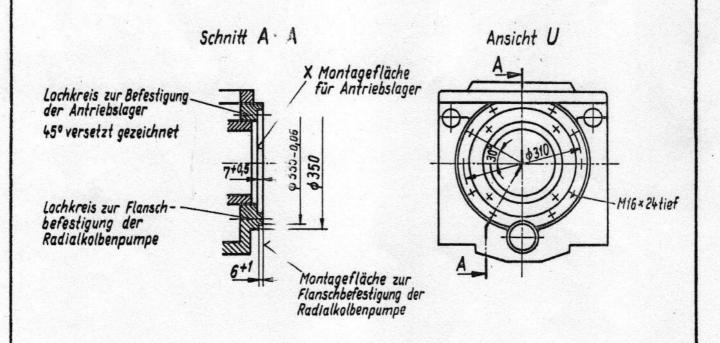


Tabelle 3


Nenngröße 5 - 5 / 16 32 - 32 / 16	bj	b2"	63	64	d ₁	d ₂	d ₃	! da	d ₅	e ₁	е 2 ,	<i>e</i> ₃	64	e ₅
5-5/16	280	240	60	110	18	M22×1,5	M14×1,5	M14×1,5	M22×1,5	55	55	12,5	32 *	220
32-32/16	350	285	80	140	23	M33×2	M27×2	M27×2	M42×2	70	70	4,5	40	270


Nenngröße	- 66	e ₇	е ₈	eg	e ₁₀	e ₁₁	e ₁₂	<i>e</i> 13	e14 e15	h ₁ .	th ₂	h ₃	1	12.	Masse Kg Kg
5-5/16	200	25	25	43	32	10	32	10	36 43	160	270	20	230	181	¥ 60
32-32/16	235	35	35	62	40	18	45	20	51 58	200	340	25	300	220,5	#110

A, AD

Nenngröße 25-125/16 und 160-160/10

Bei Verwendung zur Flanschbefest jung können die Füße abgeschraubt werden.

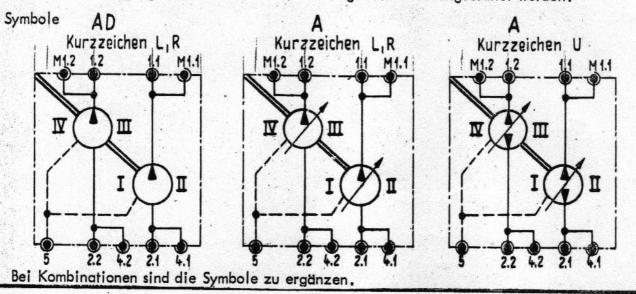

Masse: 288 kg

Tabelle 4

Förderrichtung,		Bezeichnung der Anschlüsse Seite I II Seite III IV							
Drehrichtung	Pumpenstellung	Druck-		MeB-	Druck-		MeB-	Leck- an- schluf	
Eine Förderrichtung Orehrichtung rechts	Antriebsseite N		2.1			2.2			
Eine Förderrichtung Drehrichtung links	I - +Vgmax +Vgmax I II	1.1	oder 4.1		1.2	oder 4.2			
Förderrichtung umkehrbar	I - 1.2 0 0 1.1	4.1	2.1 oder 4.1	M1.1	1.2	2.2 oder 4.2	M1.2	5	
(Übernullstellen) Drehrichtung rechts	I -Vgmax -Vgmax II	2.1 oder 4.1	1.1		2.2 oder 4.2	1.2	r) 12	•	
Förderrichtung umkehrbar (Übernullstellen)	I +Vgmax +Vgmax II	1.1	2.1 oder 4.1		1.2	2.2 oder 4.2			
Drehrichtung links	I -Vg maxVg max I 1.20 0 1.1	2.1 oder 4.1	1.1		2.2 oder 4.2	1.2			

+ Vg max: Maximales Verdrängungsvolumen

Die Ziffern I, II, III und IV kennzeichnen die entsprechenden Seiten der Radialkolbenpumpe, auf der die Betätigungselemente der Stell- und Regeleinheiten angeordnet werden.

⁻ Vg max: Maximales Verdrängungsvolumen nach Übernullstellung

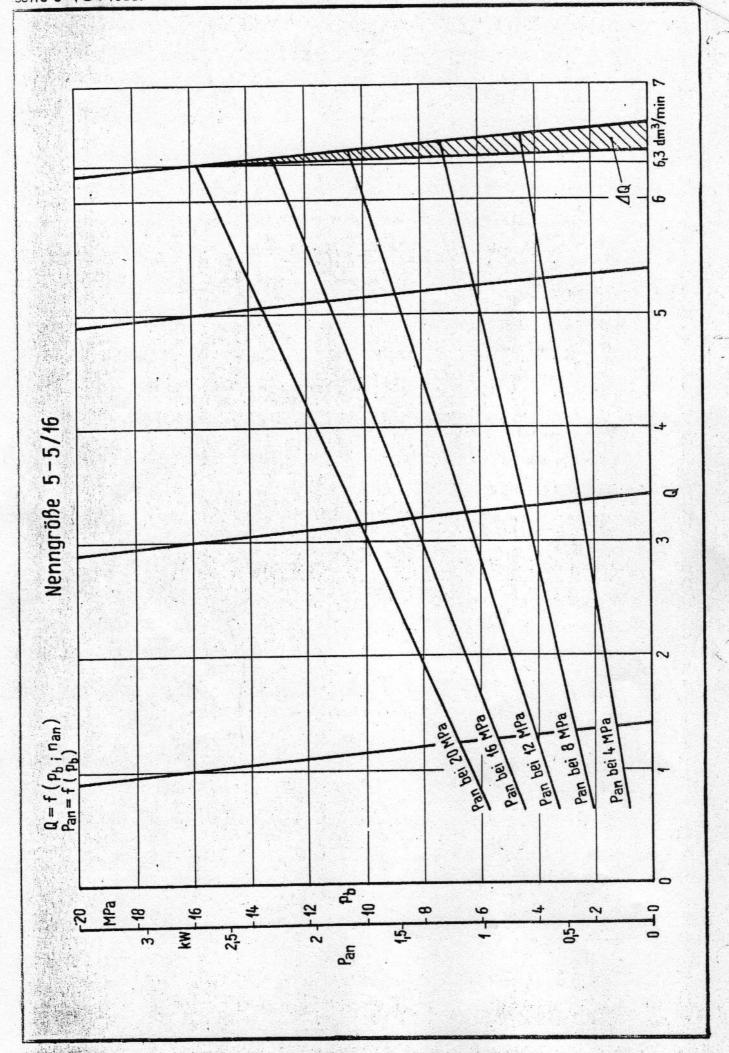
VISKOSITÄTSEINSATZBEREICH

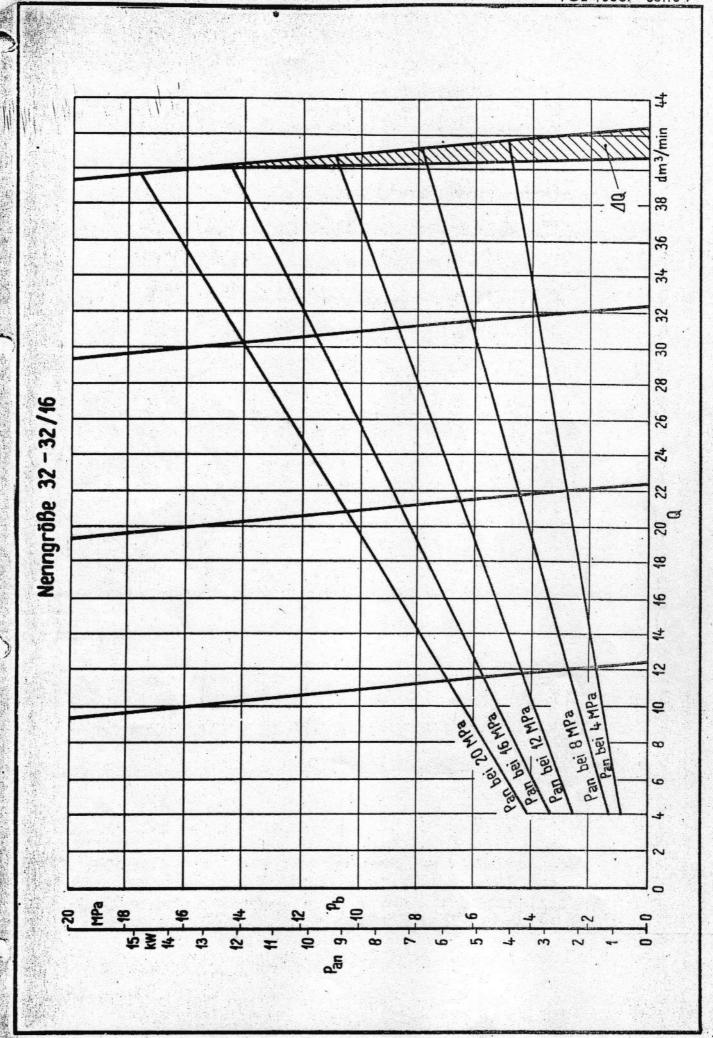
min. kinematische Viskosität $v_{min} = 20 \cdot 10^{-6} \, \text{m}^2/\text{s}$ max. kinematische Viskosität $v_{max} = 800 \cdot 10^{-6} \, \text{m}^2/\text{s}$ Startviskosität $v_{st} = 1000 \cdot 10^{-6} \, \text{m}^2/\text{s}$ bei Betriebsdruck = 0,2 MPa

TEMPERATUREINSATZBEREICH

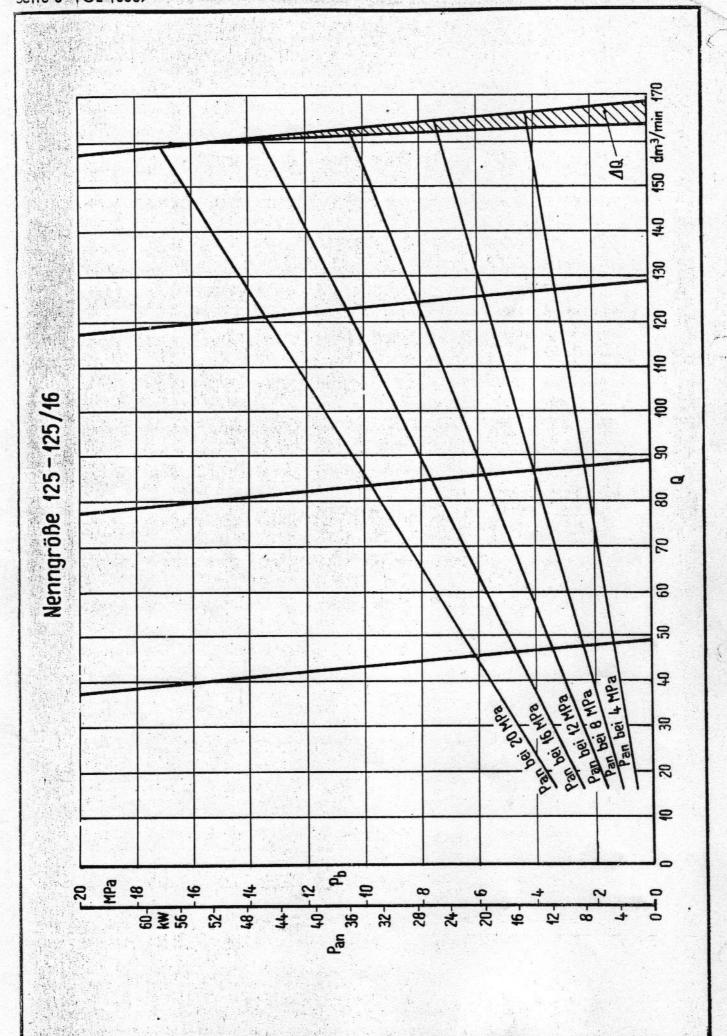
min. Fluidtemperatur im Eingang $T_{\rm fl\ min}=283\ {\rm K\ (10\ ^{\circ}C)}$ max. Fluidtemperatur im Eingang $T_{\rm fl\ max}=343\ {\rm K\ (70\ ^{\circ}C)}$ min. Umgebungstemperatur $T_{\rm u\ min}=253\ {\rm K\ (-20\ ^{\circ}C)}$ max. Umgebungstemperatur $T_{\rm u\ max}=333\ {\rm K\ (60\ ^{\circ}C)}$

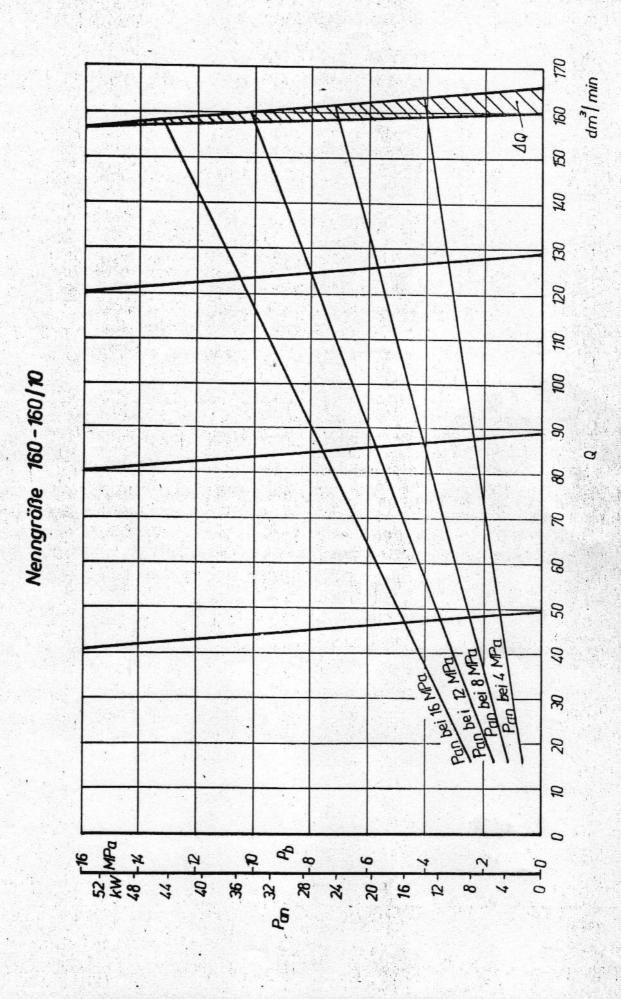
KENNLINIEN

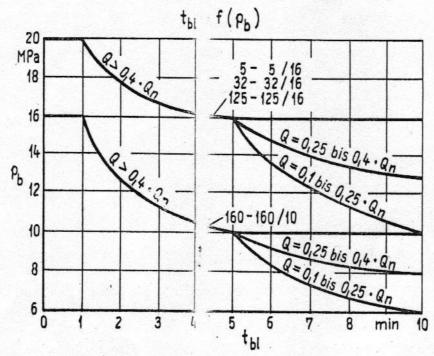

Bezugsgrößen


Pb Betriebsdruck
Q Volumenstrom

Q Streubereich des Volumenstromes
Q Nennvolumenstrom
Pan Antriebsleistung
nan Antriebsdrehzahl
tbl Belastungsdauer


Fluid Hydrauliköl H 50 TGL 17542/01
Fluidtemperatur im Eingang 323 K (50 °C)
Eingangsdruck - 0,02 MPa
Antriebsdrehzahl 1450 min⁻¹, bei Nenngröße 160-160/10 950 min⁻¹


Die Kennlinien beziehen sich auf einen Volumenstrom.



A CLARKENI

Zulässige 3elastungsdauer

gebenen zulässigen Belastungszeiten nicht überschritten werden.

jeweiligen mittleren Volumenstromes nicht überschreiten.

Q<0,1 · Q ist mit dem Hersteller sch ftlich zu vereinbaren.

$$P_{an mittl.} = \frac{p_{b 1} \cdot t_{b 1} + p_{b 2} \cdot t_{b 1} \cdot \dots}{t_{b 1} \cdot t_{b 1} \cdot t_{b 1} \cdot \dots}$$

$$Q_{mittl.} = \frac{Q_1 \cdot t_{bl \ 1} + Q_2 \cdot t_{bl \ 2}^{+} \cdots}{t_{bl \ 1} + t_{bl \ 2}^{+} \cdots}$$

Die angegebene zulässige Belastungsdau r bezieht sich auf ein Arbeitsspiel von tbl = 10 min. Bei kürzeren Arbeitsspielen ist die zuläs ige Belastungsdauer im gleichen Verhältnis zu verkürzen. Bei Arbeitsspielen von länge als 10 min, dürfen die in den Diagrammen ange-

Die zulässigen Betriebsdrücke für tbl =) min sind Dauerbetriebsdrücke. Bei wechselnden Drücken innerhalb eines Arbeitsspiels is zusätzlich der mittlere Betriebsdruck und Volumenstrom zu ermitteln. Der mittlere Betrieb druck darf den zulässigen Dauerbetriebsdruck des

Hinweise

Ersatz für TGL 10869 Ausg. 12.69 Änderungen gegenüber Ausg. 12.69:

Angabe der Nenngrößen geändert, 2x16/160 und 2x100/160 gestrichen; Nennförderstrom durch Nennverdrängungsvolumen ersetzt; Nenndruck von kp/cm² und MN/m² in MPa geändert; Drehzahlbereich erweitert; Leck-, Saug- und Eingangsdruck sowie Startviskosität aufgenommen; Gewinde M 26 x 1,5 in M 27 x 2 geändert; Symbole ergänzt; Temperatureinsatzbereich und Belastungsdauer aufgenommen; Kennlinien für Wirkungsgrad entfernt; Redaktionell überarbeitet.

Im vorliegenden Standard ist auf folgende Standards Bezug genommen: TGL 17542/01; TGL 25-13430

Rohrverschraubungen; Verschraubungen mit Kugelbuchse für axialen Zusammenbau; Nenndruck bis 640 kp/cm²; Übersicht siehe TGL 8277

Hydraulik und Pneumatik; Symbole siehe TGL 8672

Hydraulik; Radialkolbenpumpen-Kombinationen; Übersicht, Bestellangaben siehe TGL 10866

Hydraulik; Radialkolbenpumpen; Technische Forderungen siehe TGL 10867

Hydraulik; Antriebslager für Radialkolbenpumpen; Kennwerte, Hauptabmessungen, Funktionsmerkmale siehe TGL 10870

Hydraulik; Druckbegrenzungsventile für Radialkolbenpumpen; Kennwerte, Hauptabmessungen, Funktionsmerkmale siehe TGL 10871

Hydraulik; Radialkolbenpumpen; Prüfvorschrift siehe TGL 10879

Hydraulik; Stell- und Regersinheiten für Radialkolbenpumpen mit zwei Förderströmen; Kennwerte, Hauptabmessungen, Kennlinien siehe TGL 10888

Hydraulik und Pneumatik; Geräte und Baugruppen; Allgemeine technische Forderungen siehe TGL 20700

Hydraulik und Pneumatik; Hydraulische und pneumatische Einrichtungen; Begriffe, Formelzeichen, Maßeinheiten siehe TGL 20703

Hydraulik und Pneumatik; Allgemeine Prüfvorschriften siehe TGL 20706

Verschraubungen mit Schneidring für axialen Zusammenbau siehe TGL 0-2353